

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

TIJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ASSESSMENT OF NATURAL RADIATION DOSE RATES IN AND AROUND UKHRUL TOWN OF MANIPUR, INDIA

B. Arunkumar Sharma^{*1}, Bhumika Thoudam² & Md. Raheijuddin Sheikh³

^{*1}Radiotherapy Department, RIMS, Imphal - 795 004

²Department of Physics, Mount Carmel College, Bengaluru – 560 052 ³DDU KAUSHAL Kendra at Dhanamanjuri Community College, D M College of Science, Imphal -

795001

DOI: 10.5281/zenodo.829759

ABSTRACT

The natural background gamma radiation levels were measured in the dwellings of Ukhrul district of Manipur, India using Micro-R survey meter. The measured minimum, maximum and average radiation levels for outdoors were found to be 5.50 ± 0.58 , 10.00 ± 0.84 and $7.13 \pm 0.77 \mu$ R/hrrespectively. Whereas, the measured minimum, maximum and average radiation level for indoors were 5.80 ± 0.84 (Stone wall house with mud floor), 12.20 ± 0.84 (RCC building) and $9.40 \pm 0.87 \mu$ R/hr respectively. The annual effective dose to the individuals due to the exposure of the natural background gamma radiation levels for Ukhrul district of Manipur based on the present study is estimated to be $0.78 \pm 0.08 \mu$ Gy/year.

I. INTRODUCTION

Exposure to ionization radiation from natural sources is a continuous and unavoidable feature of human being. There is no place on the Earth where we cannot find natural radionuclides as they are common in rocks and soil that made our planet. Radionuclides ²³⁸U,²³²Th,⁴⁰ K,²²²Rn and²²⁰Rn are present in the indoor and outdoor environment constituting the natural background radiation. But the distribution and availability of the radionuclides mainly depends on the geology and geographical characteristics of the place and human activities [1-2]. The presence of natural radionuclides in the construction of buildings may cause increase in the exposure of radiation (gamma radiation) in the general population as most of the dwellers spend almost 80% of their time indoors [3]. Since natural radiation is the largest contributor to the annual effective dose received by the world population, the assessment of the gamma radiation dose from natural sources is the most important and immediate concern to world population because any amount of radiation can be dangerous for its potential effect on the living cells [4-5]. It can disrupt normal chemical processes of the cells, causing them to grow abnormally that could eventually lead to cancer or to cell death.

In view of the above, the knowledge of natural radioactivity as well as dose rate of one place has become important to understand its associated radiation effect of the particular site. The present study is to assess the dose rate of the natural background radiation in the Ukhrul, District of Manipur, India.

II. EXPERIMENT

Apparatus: The survey meter that we used in the experimental work is a Micro-R Survey Meter type UR 705 manufactured by Nucleonix Systems which is designed to measure low level Gamma and X-rays radiation. This portable Survey Meter works with a NaI(Tl) Scintillator offering an optimum performance in counting Low-Level Gamma Radiation dose rate. This unit can measure and display dose rates in the range of 0-10000µR/hr. **Data collection:** The Micro-R-Survey meter is used for instantaneous measurement of natural radiation level by holding it above 1m from the ground and 1m away from nearby objects like house, car, etc. The site of study is in Ukhrul district of Manipur (Figure 1), the total area is 4,544Km² with a total population of 183998 as per 2011 census. Natural dose rate was monitored from 49 villages of Ukhrul districtwhich are marked in the map of the district (Figure 2). Natural radiation level was monitored both for outdoor as well as indoor areas.

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

III. RESULTS

The outdoor natural radiation dose rate was monitored from 49 villages of Ukhrul district of Manipur. The findings are placed in Table 1. The minimum, maximum and average gamma radiation level obtained are 5.50 ± 0.58 (Finch Corner), 10.00 ± 0.84 (Naphang tang) and $7.13 \pm 0.77 \mu$ R/hrrespectively. The indoor natural radiation dose rate was monitored for five houses of different types within this monitoring area. The results are placed in Table 2. The minimum, maximum and average gamma radiation level are found to be respectively 5.80 ± 0.84 (Stone wall house with mud floor), 12.20 ± 0.84 (RCC building) and $9.40 \pm 0.87 \mu$ R/hr.

IV. DISCUSSION

The natural background gamma radiation levels were monitored in India by many workers [6-7]. National average dose rate value as evaluated by Nambi*et al*.wasreported to be 9.00 μ R/hr [7]. The outdoor average natural background radiation dose rates of the 49 different villages under Ukhrul district arefound to be almost in agreement to the national average [7]. The natural dose rates corresponding to altitudes may be fitted by a straight line with co-efficient of determination R² = 0.02 as shown in Figure 3. It shows a tendency of increasing dose rate with increasing altitude. One probable reason could be the cosmic effect at higher altitudes.

The indoor background radiation dose rates for the five different houses given in Table 2 shows RCC buildings and Bricks wall houses with concrete floor in the higher sides followed by mud wall houses with mud floor and mud wall houses with wooden floor and stone wall house with least value. This mud floor/wall is associated with the natural soil available in the location. This observation is in agreement with the earlier works of Reddy et al. [6].

The indoor gamma radiation level is observed higher than the outdoor. The probable reason could be due to the gamma radiation emitted from radioisotopes present in the walls of the house. The annual effective dose to the individuals due to the exposure of natural background gamma radiation levels as estimated from the present study for Ukhrul district of Manipur state as $0.78 \pm 0.08 \,\mu$ Gy/year.

V. CONCLUSION

The observations of this study reveal that the average natural background gamma radiation levels in this study area is in agreement with the national average. The indoor gamma radiation level is observed higher than the outdoor. The indigenous mud and stone based houses in this region show comparatively lower natural background gamma radiation dose rate than the modern type of RCC building or bricks based buildings.

VI. ACKNOWLEDGEMENTS

The Authors would like to thank Dr. S. Nabadwip Singh, Assistant Professor in Physics in Oriental College for extending his lab facilities and support in completion of this work

VII. REFERENCES

- [1] Eisebud M & Gesell T, Natural activity, Environmental radioactivity from natural, Industrial & military sources, 4th Edition, San Diego, Academy Press (1997).
- [2] Wollenberg H.A & Smith R.A, Health Phys, 58 (1990) 183.
- [3] Arogunjo AM, Farai IP & Fuwape IA, RadiatProtDosim, 108 (2004) 73.
- [4] UNCEAR, Sources and effects of ionising radiation, United Nations, New York (1993).
- [5] Narayan KK, Krishna DK & Subbarramu MC, Population exposure to ionizing radiation in India, ISRP (K) BR-3 (1991).
- [6] Reddy MS, Reddy ChG, Reddy PY & Reddy KR, Indian journal of Pure & Applied Physics, 48 (2010) 778.
- [7] Nambi KSV, Bapat VN, David M, Sundaram VK, Sunta CM &Soman SD,*Natural background radiation & population dose distribution in India*, HPD, BARC, Atomic Energy Commission, Govt. of India report (1986).

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

Sl. No.	1: Outdoor natural radiatio	GPS reading	Altitude (m)	, Manipur Average
<i>St. INO</i> .	Location name	Grs reduing	Alliude (m)	Dose rate (µR/h)
1	Gwaltabi	24° 55.040'N 94°	823	
1	Gwallabi	24 33.040 N 94 8.176'E	823	6.75±0.96
2	Thoyee	24° 55.224'N 94°	909	
2	Thoyee	9.174'E	909	8.75±0.96
3	Shankai	24° 56.607'N	882	
3	Shankai		002	6.00±0.82
4	MalastChann	94°10.239'E	901	
4	MakotChepu	24°57.013'N	901	6.25±0.96
5	Litan	94°11.882'E	914	
5	Litan	24°57.083'N	914	6.67±0.58
1	L'4	94°12.229'E	005	
6	LitanSareikhong	24°57.005'N	905	7.00±1.00
		94°12.182'E	000	
7	TM Kasom	24°58.014'N	933	6.75±0.96
0	01 1	94°13.492'E	1050	
8	Shokvao	24°59.927'N	1359	7.25±0.50
		94°15.514'E		
9	Lambui	25°0.520'N	1437	6.50±0.58
		94°16.561'E		010 0 2010 0
10	Shanshak	25°0.058'N	1613	6.33±0.58
		94°19.901'E		0100_0100
11	Shanshak War	25°0.255'N	1663	7.50±0.58
	Memorial	94°19.868'E		7.56±0.50
12	Finch Corner	25°0.878'N	1349	5.50±0.58
		94°18.652'E		5.50±0.50
13	Nungshangkhong	25°1.907'N	1799	7.50±0.58
		94°19.058'E		7.50±0.58
14	HungpungLuson	25°3.694'N	1799	8.00±0.82
		94°20.603'E		8.00±0.82
15	HungpungKazi-	25°3.854'N	1824	8.50±0.58
	phung	94°20.873'E		8.30±0.38
16	HungpungAwung	25°4.310'N	1792	7.00.0.00
	tang	94°21.089'E		7.00±0.89
17	HungpungDungrei	25°5.093'N	1839	6.00.0.00
	Junction	94°21.424'E		6.00±0.82
18	Mini Secretariat	25°5.511'N	1880	0.00.0.02
	Ukhrul	94°21.598'E		8.00±0.82
19	Phungreitang	25°5.811'N	1900	
	5 5	94°21.699'E		5.75±0.96
20	Vewland	25°5.989'N	1885	
		94°21.653'E		6.00±0.96
21	Winobazar	25°6.291'N	1847	
	() Inoouzur	94°21.688'E	1017	6.00 ± 0.82
22	Rayotang	25°6.573'N	1846	
	ingoung	94°21.553'E	1010	6.50 ± 0.82
23	Awontang	25°6.913'N	1809	
23	Awonang	94°21.683'E	1007	5.75 ± 0.58
24	Awungtang	25°7.047'N	1833	
∠4	Awungtang	25°7.047 N 94°21.815'E	1033	5.67±1.26
25	Luivoinos tono	25°7.264'N	1831	
23	Luiyainao tang		1031	6.75±0.58
26	V11	94°21.915'E	1770	7.50 1.20
26	Khararphung	25°7.552'N	1772	7.50±1.26

http://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

		94°22.032'E	Average dose rate	7.13 ±0.
49	Kahumtang	25°6.250'N	1818	7.75±0.50
48	Viewland 3	25°6.078'N 94°22.149'E	1772	8.00±0.82
47	Phangrei	25°8.689'N 94°27.757'E	2004	9.75±0.50
46	ShiruiChingthak	25°7.835'N 94°25.224'E	1892	6.33±0.58
45	ShiruiChingkha	25°7.586'N 94°24.827'E	1864	7.00±0.82
		94°24.668'E		6.33±0.58
43	Langdangphunghon LangdanPhungcham	25°6.412'N 94°23.773'E 25°7.134'N	1782	6.50±0.55
42	Old Jail Ukhrul	25°5.671'N 94°22.992'E	1686	7.00±1.00
41	BRTF Camp Ukhrul	25°5.774'N 94°22.447'E	1680	7.00±0.82
40	Sangmayang	25°5.407'N 94°22.020'E	1750	6.50±0.71
39	Hamleikhong Block-C	25°5.253'N 94°21.676'E	1822	6.75±0.79
38	Mayotang	25°5.480'N 94°21.836'E	1823	7.20±0.71
37	Seipet tang	25°5.761'N 94°21.806'E	1818	6.75±0.75
		94°22.048'E		6.83±0.55
36	Harkuikathe tang	94°22.033'E 25°5.876'N	1708	7.60±1.26
35	Khampasom tang	94°21.791'E 25°5.900'N	1849	
34	Greenland	25°6.471'N	1831	8.25±0.82
33	Tangrei	25°6.633'N 94°21.634'E	1841	8.33±0.55
32	Alungtang	25°6.732'N 94°21.693'E	1825	8.60±0.96
31	Kashung tang	25°7.241'N 94°21.802'E	1851	6.75±0.82
	-	94°21.811'E		8.00±0.82
30	Kasomtang	94°22.578'E 25°7.311'N	1842	10.00±0.84
29	Naphang tang	94°22.413'E 25°8.192'N	1634	10.00+0.84
28	Meizailung tang	25°7.896'N	1681	8.20±0.82
	Luishiphung hospital	25°7.716'N 94°22.310'E	1713	8.00 ± 1.05

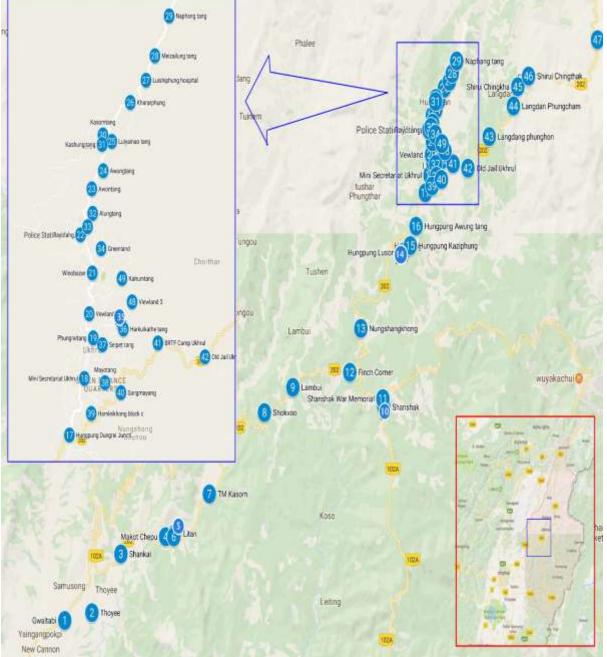
ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7

Table 2: Indoor natural radiation dose rate of different types of houses of Ukhrul district, Manipur

S1.	Types of houses	Dose rate (µR/h)			
Ν		Minimum	Maximum	Average	
0.					
1	Mud wall house with mud floor	9	11	9.80±0.84	
	Brick wall house with concrete	10	12	11.00 ± 1.00	
2	floor				
	Mud wall house with wooden	7	9	8.20±0.84	
3	floor				
4	Stone wall house with mud floor	5	7	5.80±0.84	
5	RCC building	11	13	12.20±0.84	
	Average dose rate=				

Figure 1: Map of Ukhrul

ISSN: 2277-9655 Impact Factor: 4.116 CODEN: IJESS7



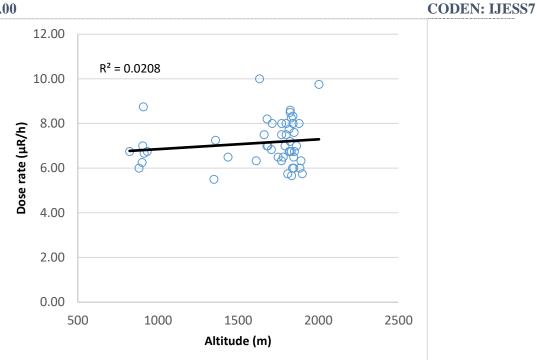


Figure2: Natural dose rate measurement Location Map of Ukhrul District

ISSN: 2277-9655

Impact Factor: 4.116

Figure 3: Graph of natural radiation dose rate($\mu R/h$) vs altitude (m) of Ukhrul district, Manipur

CITE AN ARTICLE

Sharma, B. Arunkumar, Bhumika Thoudam, and Raheijuddin Sheikh, Md. "ASSESSMENT OF NATURAL RADIATION DOSE RATES IN AND AROUND UKHRUL TOWN OF MANIPUR, INDIA." *INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES* & *RESEARCH TECHNOLOGY* 6.7 (2017): 522-28. Web. 15 July 2017.